АДАПТИВНОЕ СЖАТИЕ ДАННЫХ

В.Г.Иванов, Харьков, Украина

In work is judged that the effective compression given is possible only on principles of adaptation and results of construction of algorithm of compression given on principles of two-parametrical adaptation in a class of orthogonal transformations are resulted.

Полученные нами результаты и анализ публикаций [1, 2] дают основание сделать вывод о том, что для эффективного сжатия данных алгоритмы и устройства их реализующие должны содержать процедуры адаптации. Причем, в случае однопараметрической адаптации фиксируется длительность сообщения, а число формируемых координат изменяется. Либо, как в случае двухпараметрической адаптации, изменяется как число формируемых координат, так и длительность сообщения. В зависимости от числа параметров, по которым осуществляется адаптация, можно говорить об одно, -двух- и в общем случае многопараметрической адаптации [2].

В этой связи представляется актуальным рассмотрение вопроса построения алгоритма и структуры устройства сжатия данных на принципах двухпараметрической адаптации в классе ортогональных преобразований.

Следуя терминологии [2], будем рассматривать процесс обработки, как алгоритм сжатия данных с адаптацией по числу координат тригонометрического базиса Фурье и интервалу алпроксимации, который как в вычислительном, так и в техническом аспекте не исследован.

Графическая иллюстрация алгоритма сжатия данных с двухпараметрической адаптацией приведена на рис. 1.

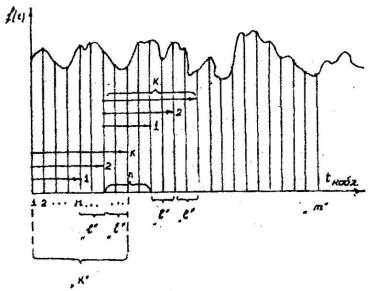


Рис. 1 Графическая иллюстрация алгоритма сжатия данных с двухпараметрической адаптацией в классе ортогональных преобразований.

Предлагаемый метод заключается в том, что весь интервал обработки $t_{naбa}$ разбивают через одинаковые промежутки времени на "m" отсчетов и на первом интервале из "n" отсчетов, число которых много меньше "m", вычисляют коэффициенты Фурье. Затем первый интервал увеличивают на l отсчетов и вновь формируют коэффициенты Фурье на втором интервале и т.д. пока число таких интервалов не станет равным k, причем последующий интервал отличается от предыдущего на l отсчетов, начала всех k интервалов совпадают. Для каждого из k интервалов производится оценка сходимости тригонометрического ряда к контролируемому параметру, причем в качестве меры сходимости принята относительная среднеквадратичная ощибка аппроксимации:

$$\mathcal{E}_{i} = \sqrt{\frac{\sum_{m=1}^{n_{i}} \left\{ f_{m}(t) - \left[C_{0}^{(i)} + \sum_{j=1}^{r=var} V_{j}^{(i)} \boldsymbol{\varphi}_{j}^{(i)}(t) \right] \right\}^{2}}{\sum_{m=1}^{n_{i}} f_{m}^{2}(t)}}$$

$$i=1,2...k$$

где $f_m(t)$ - отсчеты контролируемого параметра на соответствующих интервалах; $V_j^{(i)}$ - коэффициенты Фурье этих интервалов.

Выбор оптимального интервала обработки основывается на следующем травиле.

Обозначим отношение числа существенных координат Фурье, дающих заданное качество обработки первого интервала к числу отсчетов n. этого интервала, через C_1 . Соответственно эти величины для второго и последующих интервалов будут обозначаться как C_2 , C_3 , ... C_k . Так как зависимость значащих коэффициентов Фурье N_{3n} от длины интервала аппроксимации n_i нелинейна, то значения C_1 , C_2 , ... C_k . будут иметь различные числовые значения. Так, может оказаться, что

т.е. наиболее эффективным с точки зрения сжатия является второй интервал обработки, состоящий из (n+l) отсчетов.

Таким образом, в качестве оптимального выбирается интервал, имеющий минимальное отношение числа существенных координат Фурье к длине этого интервала при одинаковых значениях среднеквадратичной ошибки аппроксимации.

Индекс последнего отсчета выбранного интервала, увеличенный на единицу, принимается за начало нового интервала из *п* отсчетов, и весь процесс обработки повторяется, как было описано выше, пока правый конец какого-либо интервала не достигнет последней выборки на всем интервале времени наблюдения процесса.

Список литературы: 1. Мановцев А.П. Основы теории радиотелеметрии. - М.: Энергия, 1973. - 592 с. 2. Ольховский Ю.Б., Новоселов О.Н., Мановцев А.П. Сжатие данных при телеизмерениях / Под ред. В.В.Чернова. - М.: Сов. Радио, 1971. - 304 с.

Представлен доктором физ.-мат. наук, проф. Колосовым А.И.